- TitlePhysiological Requirements for Protection Against Anoxia in an Emergency Full Pressure Suit
- ReferenceYA2007.25/1/2/1/6
- Production date-04-1962 - -04-1962
- RAF Institute of Aviation MedicineBiographyBiographyThe Royal Air Force Institute of Aviation Medicine was a Royal Air Force aviation medicine research unit active between 1945 and 1994. It was first located at Farnborough Airfield in Hampshire, and was successor to the wartime RAF Physiological Laboratory. The Institute conducted theoretical and applied reseach in support of flying personnel with divisions for acceleration, altitude, biochemistry, biophysics, personal equipment and teaching. The IAM obtained a decompression chamber (moved from the Physiological Laboratory) in 1945, supplemented by a climatic chamber in 1952, and a human centrifuge in 1955 (the latter facility is still in operation and was designated a Grade 2 Listed Building in August 2007). Additionally, the Institute was responsible for a number of mobile decompression chambers and the training of operators for chambers deployed at certain RAF operational stations with the object of familiarising flying personnel with the effects of annoxia at operational altitudes. The IAM became a world leading centre for aviation medicine research in the 1960s and 1970s, gaining additional facilities, and continuing an active flight research programme that commenced in World War II. Research into protection against the effects of high altitude, high G force, heat and cold stress, noise and vibration, sleep and wakefulness, spatial disorientation, vision, aviation psychology and human error, and aircraft accident investigation dominated activities at the IAM. Much work was done to develop and improve aircrew life support equipment. The IAM ceased to exist in 1994, when many research staff and facilities were transferred to the DERA Centre for Human Sciences.
- Ernsting, JohnBiographyBiographyAir Vice-Marshal Professor John Ernsting was recognised worldwide as a leading authority in aviation medicine; his pioneering work led to the development of special life-support equipment allowing military aircrew and civil aircraft to operate at extreme altitudes. Ernsting was commissioned into the RAF Medical Branch in 1954. For 25 years he worked in the altitude division of the Institute of Aviation Medicine (IAM) at Farnborough, and he specialised in studying the physiological aspects of flying at high altitudes, including protection against hypoxia and decompression sickness, leading teams carrying out the research and development of specialised pressure suits, helmets and breathing assemblies needed for new higher flying aircraft. The work he co-ordinated at the IAM on cabin pressurisation also led to an acceptance that the cabin pressure in Concorde should be 6,000ft, rather than the internationally-agreed 8,000ft for airliners operating at lower altitudes. His finding also influenced the design of emergency oxygen supplies in airliners, and also influenced the size of the cabin windows in Concorde. In 1971 he was appointed its head, with responsibility for research, teaching and the direction of the specialist staff. During the late 1960s he was the RAF's aeromedical project officer for the development of the British versions of the American-built F-111, Phantom and Hercules aircraft. He also conducted research into a system of generating an oxygen supply in a combat aircraft. During a sabbatical year at the USAF School of Aerospace Medicine, he worked on a development of the idea, which was eventually installed in the later marks of the Harrier aircraft. He returned to the IAM in 1980 as deputy director of research. He was chairman of the aeromedical and life-support system working parties for the Tornado and for the formative phase of the Eurofighter project. In 1988 he was appointed commandant of the IAM, a post he held until his retirement in December 1992. He remained a civil consultant for the next two years. He also placed great emphasis on correct and realistic training, and played a key role in the creation and development of the RAF's Aviation Medicine Training Centre. On leaving the RAF he moved to King's College, London, to teach and conduct research in human and aviation physiology. He was the honorary civil consultant in aviation medicine to the RAF, aeromedical adviser to BAE Systems and a past president of the International Academy of Aviation and Space Medicine. Ernsting was a member of numerous specialist and international working parties, and chaired a number of Nato committees and workshops. He wrote many professional papers and was the co-editor of Aviation Medicine, the standard reference for all civil and military aviation medicine practitioners. He was elected a Fellow of the Royal College of Physicians, of the Aerospace Medical Association and of the Royal Aeronautical Society and was awarded many national and international prizes. He was appointed OBE in 1959 and CB in 1992.
- Scope and ContentA paper on the requirements for the prevention of anoxia, or oxygen loss, as a result of reduced barometric pressure. Includes illustrative graphs.
- LanguageEnglish
- Level of descriptionITEM
- Repository nameScience and Industry Museum
- Ernsting, JohnBiographyBiographyAir Vice-Marshal Professor John Ernsting was recognised worldwide as a leading authority in aviation medicine; his pioneering work led to the development of special life-support equipment allowing military aircrew and civil aircraft to operate at extreme altitudes. Ernsting was commissioned into the RAF Medical Branch in 1954. For 25 years he worked in the altitude division of the Institute of Aviation Medicine (IAM) at Farnborough, and he specialised in studying the physiological aspects of flying at high altitudes, including protection against hypoxia and decompression sickness, leading teams carrying out the research and development of specialised pressure suits, helmets and breathing assemblies needed for new higher flying aircraft. The work he co-ordinated at the IAM on cabin pressurisation also led to an acceptance that the cabin pressure in Concorde should be 6,000ft, rather than the internationally-agreed 8,000ft for airliners operating at lower altitudes. His finding also influenced the design of emergency oxygen supplies in airliners, and also influenced the size of the cabin windows in Concorde. In 1971 he was appointed its head, with responsibility for research, teaching and the direction of the specialist staff. During the late 1960s he was the RAF's aeromedical project officer for the development of the British versions of the American-built F-111, Phantom and Hercules aircraft. He also conducted research into a system of generating an oxygen supply in a combat aircraft. During a sabbatical year at the USAF School of Aerospace Medicine, he worked on a development of the idea, which was eventually installed in the later marks of the Harrier aircraft. He returned to the IAM in 1980 as deputy director of research. He was chairman of the aeromedical and life-support system working parties for the Tornado and for the formative phase of the Eurofighter project. In 1988 he was appointed commandant of the IAM, a post he held until his retirement in December 1992. He remained a civil consultant for the next two years. He also placed great emphasis on correct and realistic training, and played a key role in the creation and development of the RAF's Aviation Medicine Training Centre. On leaving the RAF he moved to King's College, London, to teach and conduct research in human and aviation physiology. He was the honorary civil consultant in aviation medicine to the RAF, aeromedical adviser to BAE Systems and a past president of the International Academy of Aviation and Space Medicine. Ernsting was a member of numerous specialist and international working parties, and chaired a number of Nato committees and workshops. He wrote many professional papers and was the co-editor of Aviation Medicine, the standard reference for all civil and military aviation medicine practitioners. He was elected a Fellow of the Royal College of Physicians, of the Aerospace Medical Association and of the Royal Aeronautical Society and was awarded many national and international prizes. He was appointed OBE in 1959 and CB in 1992.
- RAF Institute of Aviation MedicineBiographyBiographyThe Royal Air Force Institute of Aviation Medicine was a Royal Air Force aviation medicine research unit active between 1945 and 1994. It was first located at Farnborough Airfield in Hampshire, and was successor to the wartime RAF Physiological Laboratory. The Institute conducted theoretical and applied reseach in support of flying personnel with divisions for acceleration, altitude, biochemistry, biophysics, personal equipment and teaching. The IAM obtained a decompression chamber (moved from the Physiological Laboratory) in 1945, supplemented by a climatic chamber in 1952, and a human centrifuge in 1955 (the latter facility is still in operation and was designated a Grade 2 Listed Building in August 2007). Additionally, the Institute was responsible for a number of mobile decompression chambers and the training of operators for chambers deployed at certain RAF operational stations with the object of familiarising flying personnel with the effects of annoxia at operational altitudes. The IAM became a world leading centre for aviation medicine research in the 1960s and 1970s, gaining additional facilities, and continuing an active flight research programme that commenced in World War II. Research into protection against the effects of high altitude, high G force, heat and cold stress, noise and vibration, sleep and wakefulness, spatial disorientation, vision, aviation psychology and human error, and aircraft accident investigation dominated activities at the IAM. Much work was done to develop and improve aircrew life support equipment. The IAM ceased to exist in 1994, when many research staff and facilities were transferred to the DERA Centre for Human Sciences.
- Subject
- Conditions governing accessOpen access.
- Conditions governing ReproductionCopies may be supplied in accordance with current copyright legislation and Science Museum Group terms and conditions.
Creator
Associated people and organisations
Hierarchy browser
- contains 5 partsTOPYA2007.25 Papers relating to the Development of a Full Pressure Suit by P Frankenstein & Sons
- contains 3 partsSERIESYA2007.25/1 Research and Development for a Full Pressure Suit
- contains 3 partsSUB-SERIESYA2007.25/1/2 Symposium Papers