- TitleMaterials on Oxygen Systems and Equipment
- ReferenceYA2007.25/4
- Production date1944 - 1965
- Wright, Ian BBiographyBiographyIan B Wright worked in the Development Division of Frankenstein and Sons Ltd, a waterproof clothing manufacturing company based in Manchester. Along with his colleague Steve Sullivan, Wright was involved in the designing and testing of a full pressure suit in collaboration with A V Roe & Co Ltd and the Aeroplane and Armament Experimental Establishment at Boscombe Down. The suit was intended for use by pilots of the Royal Air Force Bomber Command flying V Bombers at very high altitudes. The development of ultra high altitude protective clothing came to an end in Britain when the V-Bomber force operations changed to relatively low altitude interdiction.
- Roxburgh, H. L. (Wing Commander)BiographyBiographyWorked for the RAF Institute of Aviation Medicine, c.1950-1960.
- A V Roe & Co LtdBiographyBiographyA V Roe and Co Ltd, more commonly known as Avro, was an aircraft manufacturer based in Manchester. One of the first manufacturers of aircraft, the company operated from 1910 until 1963. Avro was founded by brothers Alliott and Humphrey Verdon Roe and was based originally in the basement of the Everards Elastic Webbing Company's factory at Brownsfield Mill in Ancoats, Manchester. Avro also rented a shed at Brooklands airfield, where the finished aircraft were sold. Alliott Verson Roe was the aircraft designer, having already constructed a successful aircraft, the Roe I Triplane, in 1909. The Roe I was the first aircraft completely built from British components. Previous aircraft designs had used parts imported from overseas. Humphrey Verdon Roe was the managing director of the company, bringing funding for the new enterprise from the family webbing company that he also ran. In 1911 Roy Chadwick joined the company as Alliott’s personal assistant, working as a draughtsman. Chadwick became the firm's Chief Designer in 1918. The Avro 500, or Avro E, was the company's first mass produced aircraft. It took its first flight in March 1912. Eighteen of these were built, with most of them entering service with the Royal Flying Corps. In the same year, Avro prototyped the Avro F and Avro G, which were the world's first aircraft with fully enclosed crew accommodation, but neither went into production. September 1913 saw the first flight of the Avro 504. This was a development of the Avro 500 and was purchased by the War Office. As a result, it would see front line service during the early years of the First World War, but was later used primarily for training pilots. The Avro 504 was manufactured for a period of 20 years, with 8,340 being produced in total. The success of the Avro 504 led the company to move to a factory in Miles Platting, Manchester, followed in 1914 by an extension to the company's new works at Newton Heath, which was completed in 1919. Following the end of the First World War the lack of new orders caused severe financial problems for Avro and in August 1920 68.5% of the company’s shares were acquired by Crossley Motors, who needed additional factory space to build automobile bodies. Avro continued to operate, building aircraft at the Newton Heath works, and testing them at Alexandra Park Aerodrome in South Manchester until 1924, when flight testing moved to Woodford Aerodrome in Cheshire. In 1928, Crossley Motors sold their stake in Avro to Armstrong Siddeley in order to pay off losses they had incurred on other projects. Avro became part of the Armstrong Siddeley Development Company, prompting Alliott Verdon Roe's resignation from the company. Chief Designer Roy Chadwick remained at Avro, overseeing the production of training aircraft. Chadwick designed the Avro Tutor in 1930, followed by the twin engine Avro 652, which was later developed into the multirole Avro Anson. The Tutor was bought in large quantities by the RAF. In 1935, Avro became a subsidiary of Hawker Siddeley. As tensions in Europe increased, resulting in the outbreak of the Second World War, Avro returned to the production of military aircraft, producing the Avro Manchester, Lancaster and Lincoln bombers. The twin engine Manchester was unsuccessful, partly due to its Vulture engines. Replacing the Vultures with four Rolls-Royce Merlin engines resulted in the more successful Lancaster. 7,377 of these were produced and saw active service during the war. In 1944, the Lancaster was further developed into the Lincoln, the last piston engine bomber in Royal Air Force service. In order to meet rising demand Avro opened a new factory at Greengate, Chadderton, in 1938, where almost half of all Avro Lancasters were produced, with final assembly at Woodford Aerodrome. The following year, Avro also established an experimental department at RAF Ringway, now known as Manchester Airport, and a shadow factory at Yeadon Aerodrome, now Leeds-Bradford Airport. The Yeadon factory produced 5,500 aircraft including Ansons, Lancasters, Yorks and Lincolns. Towards the end of the Second World War, Avro put into production a number of civil airliners, in order to make up for a drop in military orders. One of these designs was the Lancastrian, which was a conversion of the Lancaster bomber. The second was the Avro York, which was also based on the Lancaster but used a different fuselage. Production of this would be limited until 1944 due to the focus on military aircraft. The final design that the company produced was the Tudor. This used many components from the Lincoln but suffered from the fact that it wasn’t sufficiently advanced when compared to existing designs and as a result it did not achieve many orders. Despite this both the York and Tudor were used in the Berlin Airlift. On 23rd August 1947 Roy Chadwick was killed in a crash involving a prototype Tudor 2 that was undergoing testing. Despite this his impact on the company continued, as he had already begun design work on a number of aircraft that Avro went on to produce. In 1948 Avro produced the Tudor 8 which was powered by four Nene jet engines. This design retained the tail wheel undercarriage, which placed the engine exhausts close to the ground. As a result, the company replaced this with a tricycle undercarriage for the Tudor 9. The design became known as the Avro Ashton, which first flew in 1950. Although this was one of the first jet transport aircraft it was primarily used for research and it was not intended to enter service. On 30th August 1952 the Avro 698 made its first flight. This was a four engine jet bomber that had been developed to replace existing piston engine designs. Further development of the design resulted in the Avro 707 and the Avro 710. The 710 was not put into full production as it was considered too time consuming to develop. The 698 entered service in 1956 under the name Vulcan, with an improved B.2 version introduced in 1960. The Avro Vulcan was retired in 1984 after having only being using in combat once, during the 1982 Falklands War. During the late 1950s the company developed the 748 turbo-prop airliner. This successful design was sold around the world and was later developed into the Ashton transport by Hawker Siddeley. The same period also saw the company’s weapons research division begin development of the Blue Steel nuclear missile. During 1963, parent company Hawker Siddeley restructured its aviation subsidiaries. Each subsidiary had operated under its own brand name, but from July 1963 all subsidiaries were merged into Hawker Siddeley's Aviation Division, which was operated as a single brand. The missile division of the company would become part of the Dynamics Division. Avro as a company ceased to exist, but the Avro was later reused by British Aerospace for their 146 regional airliner, known as the Avro RJ.
- Royal Aircraft EstablishmentBiographyBiographyThe Royal Aircraft Establishment (RAE) was formed in June 1918 when the Royal Aircraft Factory (RAF) was renamed, partly to avoid its abbreviation being confused with the newly formed Royal Airforce. In addition to this renaming there was also a shift away from the production that had previously been undertaken on the Establishment’s Farnborough site, and an increased focus on the research and development that was seen as its main role in the aviation industry, although a small number of aircraft continued to be constructed on site until the end of the war in November 1918. As part of this the sites function was defined as being to conduct experimental and development work on aeroplanes and engines, the testing of experimental instruments and accessories, undertaking flying instrument development for which there was little commercial demand, investigating failures within aircraft and components, liaison with industrial contractors for research purposes, technical supervision during construction of experimental machines, being available for approach for approval of designs and stressing of new aeroplanes, and the issue of airworthy certificate and of technical publications. The first director of the newly renamed RAE was W. Sydney Smith, who had replaced Henry Fowler as head of the RAF in April 1918. With the new focus on research and development he brought about some reorganisation of the departments with some being established or changed to focus on specialist areas including aerodynamics, engines, physics, instruments, metallurgy, mechanical testing, chemistry and fabrics. With the end of the First World War the RAE underwent a large reduction in staff and resources, with the numbers employed falling from 5,052 in November 1918, to 1,380 by the mid-1920s. There was a similar reduction in funding, with only 3.9% of the Air Estimate being allocated to the site in 1922, but research would continue to be conducted despite these difficulties. In 1919 there was also a shift away from purely military work as several companies approached the RAE for assistance with the design and handling characteristics of their new civil aircraft. The first Certificate of Airworthiness was also issue to a civilian aircraft at this time. As well as this 1919 also saw the beginning of the early helicopter work undertaken by Louis Brennan. Based in one of the airship sheds on the site he continued testing until 1925 when it crashed during a demonstration and the Air Ministry cut the project’s funding. In 1920 the Wireless and Photography department was formed, illustrating the growing importance of these technologies, and more sophisticated equipment was installed in the structures department to test wing loading, replacing the previous method of using sandbags to weight aircraft components. The research activities of the RAE continued throughout the 1920s. These included comparisons between the results gains from full scale flight tests and those from models tested in wind tunnels as well as theoretical studies of stability and other flight characteristics. Other work included the development of an early variable pitch propeller and the testing of many of the new types of aircraft that were being developed by numerous companies. The development of oxygen systems for aircrews was also undertaken due to the increased altitudes that were being encountered both in tests and in everyday flight. Also, during the 1920s a great deal of research was undertaken in the development of aircraft catapults. These used a compressed air and hydraulics to launch aircraft and would be later developed for use on the Royal Navy’s large warships. Further work would be undertaken on inflight refuelling and 1927 would see the start of experiments to develop turbine engines by Alan Arnold Griffith. There was also a great deal of work undertaken on the RAE Larynx, an pilotless aircraft designed as a guided anti-ship weapons and seen as a predecessor to both cruise missiles and modern drone aircraft. Seven of these were produced and tested and, although it did not enter production, it was the start of the development of numerous drone aircraft that were used for gunnery targets, such as the Queen Bee that was used by the Royal Navy during the 1930s. The development of photographic equipment was an important area of development in the interwar period and in 1929 the RAE produced the first of its F24 aircraft cameras. This was fitted to many aircraft during the Second World War for aerial reconnaissance and would continue to be used until the mid-1950s. An Instrument and Photographic Department was also formed to help with the development of equipment for aerial photography, reflecting its growing importance both in military and civilian circles. The problem of spinning in aircraft was also tackled at this time with the production of a 12ft wind tunnel in which to conduct tests. This was followed in 1935 by a 24ft tunnel that was used to test air and water-cooled engines and other full size components. A 660ft tank was also built to test the hydrodynamics of seaplane hulls. Finally, in 1937 an additional wind tunnel was constructed that was able to operate at 600mph, reflecting the growing performance of aircraft at the time. The declaration of war in August 1939 ““made little fundamental change in the policy and work of the Establishment since it was the expected culmination of what was known as the ‘Expansion Scheme’ which had been going on progressively since the adoption of a national rearmament policy in 1935”. Despite this there was a great deal of expansion with the number of staff increasing to 6,000 and new runways and hangars being constructed, which brought the airfield site up to 800 acres. Despite the site’s importance, the RAE was only bombed once during the course of the war. This occurred on 16th August 1940 when eight aircraft dropped a total of 20 bombs, although only half hit the site with the rest falling on nearby houses. Three members of staff were killed, and work was disrupted for three days but would then resume, with some operations being dispersed to other sites. During the war a large number of new systems were developed, including a gyro gun-sight that improved the accuracy of fighter aircraft and early forms of airborne RADAR, which were tested by the Radio Department. Tests on captured enemy aircraft were also undertaken as were early tests on models of the Gloster E28/39, Britain’s first jet aircraft. Advances were also made in aerial photography and a new bombsite was also developed as was a rocket propelled catapult designed to fire aircraft from merchant ships. In August 1941 Beatrice Shilling, known as Tilly, developed the R.A.E. Restrictor, better known as Miss Shilling’s Orifice. This was developed to prevent loss of power in aircraft performing negative ‘g’ manoeuvres during combat and was a simple washer fitted to the fuel pipe that prevented the engine from being flooded by fuel. Although it did not completely solve the issue it did allow for quick low ‘g’ manoeuvres to be conducted and bought time for a more permanent solution to be developed by Rolls-Royce, in the form of pressure carburettors. With the end of the Second World War in 1945 the RAE again underwent a reduction in staffing. From a wartime peak of around 6,000 this dropped to approximately 3,000 as many of the site’s personnel returned to the civilian industry. Also, in March of the same year research into piston powered aircraft ceased and all attention was focused on jet propulsion. In November 1945 the RAE was opened to the public in order to illustrate the site’s war work. Not only was the site opened but there was also a display of British and German aircraft which drew a great deal of attention. In the immediate post war years research continued, although at a much reduced intensity, and included a great deal of research into transonic flight characteristics. Some of this was undertaken using rocket propelled models dropped from aircraft in flight. Some research was also conducted on the Miles M.52 prior to this project’s cancellation. A further area of investigation at this time was the installation of flexible decks on aircraft carriers. This hope to replace the undercarriage of aircraft with a sprung rubber deck on ships. It was hoped that this would increase the performance of aircraft, but it was never implemented in service. A more successful design was the angled flight deck, which was proposed by the Naval Aircraft Department and, after a model was produced and refinements implement, this was adopted as standard for all aircraft carriers at the time. In 1948 the Society of British Aircraft Constructors moved their annual display to Farnborough. This would continue to be held annually on the site until 1962, when it changed to a biannual display in partnership with the Paris Air Show. Although initially this was only open to British designs from 1974 it became the Farnborough International Airshow. In 1952 the air show was the site of an major accident when a de Havilland DH110 broke up during a display and crashed into the crowd, killing 31. During the 1950s a substantial amount of testing was undertaken on many new civilian designs if aircraft and, even though some of these did not enter service, a great deal of technical information was gained from the experiments. Helicopters also began to undergo testing at the RAE with numerous aspects of their design being tested. 1952 also saw the arrival of an Avro 707 which was used to examine the aerodynamic properties of delta wings, data that would be later used in the design of Concorde and the Avro Vulcan. Following the loss of two Comet aircraft in 1954 the RAE was the site of a major investigation into the causes of their loss. Parts were salved from both of the crashes and brought back to Farnborough where they were pieced back together. Further to this a large water tank was built where a complete Comet body was repeatedly pressurised to investigate the effect of repeated pressurisation and depressurisation. Other Comets were also sent to the RAE to conduct flight trails and other investigations. All of these tests found that the aircraft had been lost due to the failure of the structure and led to a redesign of the type, as well as a greater understanding of the science of metal fatigue. By 1958 the structure of the RAE had developed to have the following departments: Aerodynamics, Armament, Armament and Instrument Experimentation, Carrier Equipment, Chemistry, Electrical Engineering, Experimental Flying, Guided Weapons, Instruments, Instrument and Photographic, Mathematical Services, Mechanical Engineering, Metallurgy, Naval Aircraft, Radio, Rocket Propulsion and Structures. 1958 also saw the beginning of calculations on the TRIDAC analogue computer as well as the launch of many of the rocketry projects that the RAE was involved in. These were the Skylark and Black Knight rockets that were both tested at the Woomera facility in Australia. During the 1960 the RAE was involved in a number of projects ranging from the development of the UK3 satellite, the first UK satellite, and the TSR2 aircraft to the invention of high strength carbon fibre. RAE scientists would also be present at the first launch of the Blue Streak rocket in 1964. This period also saw work undertaken as part of the development of Concorde, including testing the airframe for the effects of heat and stress. In 1970 the Royal Aircraft Establishment was involved in the launch of the R1 satellite by the Black Arrow rocket from the Woomera test site. This was the responsibility of the space department and built on the work they had undertaken on the previous Black Knight system. They would also have design authority for the Prospero satellite that was launched in 1971 and the Ariel IV, launched in 1973.`` 1970 also saw the opening of the RAE Museum on the site. For the rest of the 1970s the RAE was involved in the development of satellite and senor systems, for both military and civilian uses. The increase in importance of the satellite research was demonstrated in 1988 when the RAE changed its name to the Royal Aerospace Establishment. On 1st April 1991 the Royal Aerospace Establishment merged with the Admiralty Research Establishment, the Aeroplane and Armament Experimental Establishment, the Royal Armament Research and Development Establishment and the Royal Signals and Radar Establishment to form the Defence Research Agency. This brought together all of the previously independent Defence Research Establishments before it was itself merged with other departments to form the Defence Evaluation and Research Agency in 1995. Research flying would continue at Farnborough under these new institutions until 1994 when this end and in 2003 all Ministry of Defence operations on the airfield ceased.
- Normalair Ltd.BiographyBiographyIn 1946 Normalair Ltd. was formed as a subsidiary company of Westland Aircraft Ltd. to meet the growing demands for this specialist equipment, and today employs 1,100 people and has its own extensive production facilities. Normalair operate the most extensive respiratory laboratory, and are the largest producers of aircraft pressurisation, air conditioning and oxygen breathing equipment, in Europe. All British military aircraft that are pressurised are fitted with Normalair equipment, and such famous airliners as the Viscount, Britannia and Comet are equipped by Normalair. With subsidiary companies in Canada and Australia, and with representatives and agencies all over the world, Normalair provides a very wide market with cabin pressure controllers, discharge valves, safety valves, humidifiers, water extractors, flow control valves, cooling turbines, oxygen regulators, liquid oxygen converters, and many items of equipment vital to the needs of the aircraft of today. For several years the company has had license agreements with the two American companies foremost in these fields, namely the Garratt Corporation of Los Angeles and Bendix Aviation of New York. These agreements have been the source of substantial dollar export business by Normalair. In 1953, Normalair provided the oxygen equipment that enabled Sir Edmund Hillary and Sherpa Tensing to be the first to conquer Everest and, in 1955, provided the oxygen sets that were used in the first successful assault on Mount Kanchenjunga. The company also produces lightweight portable oxygen equipment for medical, industrial and emergency use, and are the sales agents in the UK for the respirators and breathing equipment made by Mrs Dräger of Lubeck. This business is handled by Normalair's branch office in Manchester. The Garrett Corporation took a 48% share in the company in 1966, and was subsequently renamed Normalair-Garrett Limited (NGL). The company is now Honeywell Normalair Garrett Ltd.
- RAF Institute of Aviation MedicineBiographyBiographyThe Royal Air Force Institute of Aviation Medicine was a Royal Air Force aviation medicine research unit active between 1945 and 1994. It was first located at Farnborough Airfield in Hampshire, and was successor to the wartime RAF Physiological Laboratory. The Institute conducted theoretical and applied reseach in support of flying personnel with divisions for acceleration, altitude, biochemistry, biophysics, personal equipment and teaching. The IAM obtained a decompression chamber (moved from the Physiological Laboratory) in 1945, supplemented by a climatic chamber in 1952, and a human centrifuge in 1955 (the latter facility is still in operation and was designated a Grade 2 Listed Building in August 2007). Additionally, the Institute was responsible for a number of mobile decompression chambers and the training of operators for chambers deployed at certain RAF operational stations with the object of familiarising flying personnel with the effects of annoxia at operational altitudes. The IAM became a world leading centre for aviation medicine research in the 1960s and 1970s, gaining additional facilities, and continuing an active flight research programme that commenced in World War II. Research into protection against the effects of high altitude, high G force, heat and cold stress, noise and vibration, sleep and wakefulness, spatial disorientation, vision, aviation psychology and human error, and aircraft accident investigation dominated activities at the IAM. Much work was done to develop and improve aircrew life support equipment. The IAM ceased to exist in 1994, when many research staff and facilities were transferred to the DERA Centre for Human Sciences.
- Billingham, JohnBiographyBiographyJohn Billingham was born on 18 March 1930 in Worcester, and after earning a degree in physiology at Oxford University, he started clinical studies at Guy’s Hospital in London, qualifying in 1954. He also attended meetings of the British Interplanetary Society. In 1956 Billingham joined the Royal Air Force as a medical officer, training as a surgeon and rising to the rank of squadron leader. His research at the Royal Air Force Institute of Aviation Medicine in Farnborough was particularly focused on climatic physiology, and included the impact of heat stress on pilots. In 1963 Billingham joined NASA after being headhunted from the Institute becoming the head of environment physiology at NASA's Johnson Space Center in Houston. He was hired to improve space suit design, with an early project being to develop water cooled underwear which the RAF Insitute had already been long working on. In 1965 Billingham moved to Ames Research Center, where he led the first comprehensive study on a permanent lunar laboratory. He was eventually named chief of the Life Sciences division. He supported the search for intelligent and microbial extraterrestrial life with a major programme including workshops, research, papers, and a major conference in 1979 later published as a book, Life in the Universe.
- Federal Aviation AdministrationBiographyBiographyThe Federal Aviation Administration (FAA) of the United States is a national authority with powers to regulate all aspects of civil aviation. These include the construction and operation of airports, air traffic management, the certification of personnel and aircraft, and the protection of U.S. assets during the launch or re-entry of commercial space vehicles. Its function was formely held by the Civil Aeronautics Administration and is now a part of the US Department of Transportation.
- Royal Air ForceBiographyBiographyThe Royal Air Force was created by the amalgamation of the Royal Flying Corp and the Royal Naval Air Service as an independent air service during the First World War.
- Simpson, R.E.BiographyBiographyWorked at the Royal Aircraft Establishment, Farnborough.
- Bolton, C.B.BiographyBiographyWorked at the Royal Aircraft Establishment, Farnborough.
- Beardshall, GeorgeBiographyBiographyGeorge Beardshall was an engineer who is known to have worked for AVRO during the Second World War. Bearshall later worked as a Chief Engineer in the Oxygen Division of Normalair Ltd., which manufactured life support equipment for the aerospace industry.
- Robertson, D.G.BiographyBiographyWorked for the RAF Institute of Aviation Medicine, Farnborough.
- Bendix Aviation CorporationBiographyBiographyThe Bendix Aviation Corporation was a manufacturer of aircraft parts based from 1929 to 1960 in Los Angeles, California. It was started by inventor Vincent Bendix in 1929 as a continuation of his auto parts company. It was renamed to Bendix Corporation in 1960, and in 1983 was acquired by the Allied Corporation (later Allied Signal) and combined with King Radio Company to form Bendix/King. Now owned by Honeywell, Bendix/King remains a brand of avionics. Bendix Aviation developed and manufactured advanced carburetion for aircraft engines; landing gear oleo struts; jet engine fuel controls for early J79 engines; and designed guidance systems and assembled the Talos missile for the US Navy. Bendix aviation masks and gauges were also modified and tested for use in diving and hyperbaric applications.
- Ministry of SupplyBiographyBiographyThe Ministry of Supply was established in 1939 with responsibility for the Royal Ordnance Factories and for the supply of munitions, clothing etc to the War Office and Air Ministry. In 1946 it took over the responsibilities of the Ministry of Aircraft Production after it was abolished. In October 1959 the civil aviation functions of the Ministry of Transport and Civil Aviation were transferred to the Ministry of Supply, which was simultaneously disbanded and reconstituted as the Ministry of Aviation; at the same time supply functions, with the exception of those relating to aircraft, guided missiles, radar and electronic equipment, were returned to the Air Ministry and War Office.
- Scope and ContentPublications, instructional materials, technical papers and reports, and other related ephemera to aid in the development of oxygen pressure regulatory systems, supply systems and equipment. Originally kept in a brown folder marked 'R.A.E. Instruction'.
- Extent33 items
- LanguageEnglish
- Level of descriptionSERIES
- Repository nameScience and Industry Museum
- A V Roe & Co LtdBiographyBiographyA V Roe and Co Ltd, more commonly known as Avro, was an aircraft manufacturer based in Manchester. One of the first manufacturers of aircraft, the company operated from 1910 until 1963. Avro was founded by brothers Alliott and Humphrey Verdon Roe and was based originally in the basement of the Everards Elastic Webbing Company's factory at Brownsfield Mill in Ancoats, Manchester. Avro also rented a shed at Brooklands airfield, where the finished aircraft were sold. Alliott Verson Roe was the aircraft designer, having already constructed a successful aircraft, the Roe I Triplane, in 1909. The Roe I was the first aircraft completely built from British components. Previous aircraft designs had used parts imported from overseas. Humphrey Verdon Roe was the managing director of the company, bringing funding for the new enterprise from the family webbing company that he also ran. In 1911 Roy Chadwick joined the company as Alliott’s personal assistant, working as a draughtsman. Chadwick became the firm's Chief Designer in 1918. The Avro 500, or Avro E, was the company's first mass produced aircraft. It took its first flight in March 1912. Eighteen of these were built, with most of them entering service with the Royal Flying Corps. In the same year, Avro prototyped the Avro F and Avro G, which were the world's first aircraft with fully enclosed crew accommodation, but neither went into production. September 1913 saw the first flight of the Avro 504. This was a development of the Avro 500 and was purchased by the War Office. As a result, it would see front line service during the early years of the First World War, but was later used primarily for training pilots. The Avro 504 was manufactured for a period of 20 years, with 8,340 being produced in total. The success of the Avro 504 led the company to move to a factory in Miles Platting, Manchester, followed in 1914 by an extension to the company's new works at Newton Heath, which was completed in 1919. Following the end of the First World War the lack of new orders caused severe financial problems for Avro and in August 1920 68.5% of the company’s shares were acquired by Crossley Motors, who needed additional factory space to build automobile bodies. Avro continued to operate, building aircraft at the Newton Heath works, and testing them at Alexandra Park Aerodrome in South Manchester until 1924, when flight testing moved to Woodford Aerodrome in Cheshire. In 1928, Crossley Motors sold their stake in Avro to Armstrong Siddeley in order to pay off losses they had incurred on other projects. Avro became part of the Armstrong Siddeley Development Company, prompting Alliott Verdon Roe's resignation from the company. Chief Designer Roy Chadwick remained at Avro, overseeing the production of training aircraft. Chadwick designed the Avro Tutor in 1930, followed by the twin engine Avro 652, which was later developed into the multirole Avro Anson. The Tutor was bought in large quantities by the RAF. In 1935, Avro became a subsidiary of Hawker Siddeley. As tensions in Europe increased, resulting in the outbreak of the Second World War, Avro returned to the production of military aircraft, producing the Avro Manchester, Lancaster and Lincoln bombers. The twin engine Manchester was unsuccessful, partly due to its Vulture engines. Replacing the Vultures with four Rolls-Royce Merlin engines resulted in the more successful Lancaster. 7,377 of these were produced and saw active service during the war. In 1944, the Lancaster was further developed into the Lincoln, the last piston engine bomber in Royal Air Force service. In order to meet rising demand Avro opened a new factory at Greengate, Chadderton, in 1938, where almost half of all Avro Lancasters were produced, with final assembly at Woodford Aerodrome. The following year, Avro also established an experimental department at RAF Ringway, now known as Manchester Airport, and a shadow factory at Yeadon Aerodrome, now Leeds-Bradford Airport. The Yeadon factory produced 5,500 aircraft including Ansons, Lancasters, Yorks and Lincolns. Towards the end of the Second World War, Avro put into production a number of civil airliners, in order to make up for a drop in military orders. One of these designs was the Lancastrian, which was a conversion of the Lancaster bomber. The second was the Avro York, which was also based on the Lancaster but used a different fuselage. Production of this would be limited until 1944 due to the focus on military aircraft. The final design that the company produced was the Tudor. This used many components from the Lincoln but suffered from the fact that it wasn’t sufficiently advanced when compared to existing designs and as a result it did not achieve many orders. Despite this both the York and Tudor were used in the Berlin Airlift. On 23rd August 1947 Roy Chadwick was killed in a crash involving a prototype Tudor 2 that was undergoing testing. Despite this his impact on the company continued, as he had already begun design work on a number of aircraft that Avro went on to produce. In 1948 Avro produced the Tudor 8 which was powered by four Nene jet engines. This design retained the tail wheel undercarriage, which placed the engine exhausts close to the ground. As a result, the company replaced this with a tricycle undercarriage for the Tudor 9. The design became known as the Avro Ashton, which first flew in 1950. Although this was one of the first jet transport aircraft it was primarily used for research and it was not intended to enter service. On 30th August 1952 the Avro 698 made its first flight. This was a four engine jet bomber that had been developed to replace existing piston engine designs. Further development of the design resulted in the Avro 707 and the Avro 710. The 710 was not put into full production as it was considered too time consuming to develop. The 698 entered service in 1956 under the name Vulcan, with an improved B.2 version introduced in 1960. The Avro Vulcan was retired in 1984 after having only being using in combat once, during the 1982 Falklands War. During the late 1950s the company developed the 748 turbo-prop airliner. This successful design was sold around the world and was later developed into the Ashton transport by Hawker Siddeley. The same period also saw the company’s weapons research division begin development of the Blue Steel nuclear missile. During 1963, parent company Hawker Siddeley restructured its aviation subsidiaries. Each subsidiary had operated under its own brand name, but from July 1963 all subsidiaries were merged into Hawker Siddeley's Aviation Division, which was operated as a single brand. The missile division of the company would become part of the Dynamics Division. Avro as a company ceased to exist, but the Avro was later reused by British Aerospace for their 146 regional airliner, known as the Avro RJ.
- Wright, Ian BBiographyBiographyIan B Wright worked in the Development Division of Frankenstein and Sons Ltd, a waterproof clothing manufacturing company based in Manchester. Along with his colleague Steve Sullivan, Wright was involved in the designing and testing of a full pressure suit in collaboration with A V Roe & Co Ltd and the Aeroplane and Armament Experimental Establishment at Boscombe Down. The suit was intended for use by pilots of the Royal Air Force Bomber Command flying V Bombers at very high altitudes. The development of ultra high altitude protective clothing came to an end in Britain when the V-Bomber force operations changed to relatively low altitude interdiction.
- Roxburgh, H. L. (Wing Commander)BiographyBiographyWorked for the RAF Institute of Aviation Medicine, c.1950-1960.
- Royal Aircraft EstablishmentBiographyBiographyThe Royal Aircraft Establishment (RAE) was formed in June 1918 when the Royal Aircraft Factory (RAF) was renamed, partly to avoid its abbreviation being confused with the newly formed Royal Airforce. In addition to this renaming there was also a shift away from the production that had previously been undertaken on the Establishment’s Farnborough site, and an increased focus on the research and development that was seen as its main role in the aviation industry, although a small number of aircraft continued to be constructed on site until the end of the war in November 1918. As part of this the sites function was defined as being to conduct experimental and development work on aeroplanes and engines, the testing of experimental instruments and accessories, undertaking flying instrument development for which there was little commercial demand, investigating failures within aircraft and components, liaison with industrial contractors for research purposes, technical supervision during construction of experimental machines, being available for approach for approval of designs and stressing of new aeroplanes, and the issue of airworthy certificate and of technical publications. The first director of the newly renamed RAE was W. Sydney Smith, who had replaced Henry Fowler as head of the RAF in April 1918. With the new focus on research and development he brought about some reorganisation of the departments with some being established or changed to focus on specialist areas including aerodynamics, engines, physics, instruments, metallurgy, mechanical testing, chemistry and fabrics. With the end of the First World War the RAE underwent a large reduction in staff and resources, with the numbers employed falling from 5,052 in November 1918, to 1,380 by the mid-1920s. There was a similar reduction in funding, with only 3.9% of the Air Estimate being allocated to the site in 1922, but research would continue to be conducted despite these difficulties. In 1919 there was also a shift away from purely military work as several companies approached the RAE for assistance with the design and handling characteristics of their new civil aircraft. The first Certificate of Airworthiness was also issue to a civilian aircraft at this time. As well as this 1919 also saw the beginning of the early helicopter work undertaken by Louis Brennan. Based in one of the airship sheds on the site he continued testing until 1925 when it crashed during a demonstration and the Air Ministry cut the project’s funding. In 1920 the Wireless and Photography department was formed, illustrating the growing importance of these technologies, and more sophisticated equipment was installed in the structures department to test wing loading, replacing the previous method of using sandbags to weight aircraft components. The research activities of the RAE continued throughout the 1920s. These included comparisons between the results gains from full scale flight tests and those from models tested in wind tunnels as well as theoretical studies of stability and other flight characteristics. Other work included the development of an early variable pitch propeller and the testing of many of the new types of aircraft that were being developed by numerous companies. The development of oxygen systems for aircrews was also undertaken due to the increased altitudes that were being encountered both in tests and in everyday flight. Also, during the 1920s a great deal of research was undertaken in the development of aircraft catapults. These used a compressed air and hydraulics to launch aircraft and would be later developed for use on the Royal Navy’s large warships. Further work would be undertaken on inflight refuelling and 1927 would see the start of experiments to develop turbine engines by Alan Arnold Griffith. There was also a great deal of work undertaken on the RAE Larynx, an pilotless aircraft designed as a guided anti-ship weapons and seen as a predecessor to both cruise missiles and modern drone aircraft. Seven of these were produced and tested and, although it did not enter production, it was the start of the development of numerous drone aircraft that were used for gunnery targets, such as the Queen Bee that was used by the Royal Navy during the 1930s. The development of photographic equipment was an important area of development in the interwar period and in 1929 the RAE produced the first of its F24 aircraft cameras. This was fitted to many aircraft during the Second World War for aerial reconnaissance and would continue to be used until the mid-1950s. An Instrument and Photographic Department was also formed to help with the development of equipment for aerial photography, reflecting its growing importance both in military and civilian circles. The problem of spinning in aircraft was also tackled at this time with the production of a 12ft wind tunnel in which to conduct tests. This was followed in 1935 by a 24ft tunnel that was used to test air and water-cooled engines and other full size components. A 660ft tank was also built to test the hydrodynamics of seaplane hulls. Finally, in 1937 an additional wind tunnel was constructed that was able to operate at 600mph, reflecting the growing performance of aircraft at the time. The declaration of war in August 1939 ““made little fundamental change in the policy and work of the Establishment since it was the expected culmination of what was known as the ‘Expansion Scheme’ which had been going on progressively since the adoption of a national rearmament policy in 1935”. Despite this there was a great deal of expansion with the number of staff increasing to 6,000 and new runways and hangars being constructed, which brought the airfield site up to 800 acres. Despite the site’s importance, the RAE was only bombed once during the course of the war. This occurred on 16th August 1940 when eight aircraft dropped a total of 20 bombs, although only half hit the site with the rest falling on nearby houses. Three members of staff were killed, and work was disrupted for three days but would then resume, with some operations being dispersed to other sites. During the war a large number of new systems were developed, including a gyro gun-sight that improved the accuracy of fighter aircraft and early forms of airborne RADAR, which were tested by the Radio Department. Tests on captured enemy aircraft were also undertaken as were early tests on models of the Gloster E28/39, Britain’s first jet aircraft. Advances were also made in aerial photography and a new bombsite was also developed as was a rocket propelled catapult designed to fire aircraft from merchant ships. In August 1941 Beatrice Shilling, known as Tilly, developed the R.A.E. Restrictor, better known as Miss Shilling’s Orifice. This was developed to prevent loss of power in aircraft performing negative ‘g’ manoeuvres during combat and was a simple washer fitted to the fuel pipe that prevented the engine from being flooded by fuel. Although it did not completely solve the issue it did allow for quick low ‘g’ manoeuvres to be conducted and bought time for a more permanent solution to be developed by Rolls-Royce, in the form of pressure carburettors. With the end of the Second World War in 1945 the RAE again underwent a reduction in staffing. From a wartime peak of around 6,000 this dropped to approximately 3,000 as many of the site’s personnel returned to the civilian industry. Also, in March of the same year research into piston powered aircraft ceased and all attention was focused on jet propulsion. In November 1945 the RAE was opened to the public in order to illustrate the site’s war work. Not only was the site opened but there was also a display of British and German aircraft which drew a great deal of attention. In the immediate post war years research continued, although at a much reduced intensity, and included a great deal of research into transonic flight characteristics. Some of this was undertaken using rocket propelled models dropped from aircraft in flight. Some research was also conducted on the Miles M.52 prior to this project’s cancellation. A further area of investigation at this time was the installation of flexible decks on aircraft carriers. This hope to replace the undercarriage of aircraft with a sprung rubber deck on ships. It was hoped that this would increase the performance of aircraft, but it was never implemented in service. A more successful design was the angled flight deck, which was proposed by the Naval Aircraft Department and, after a model was produced and refinements implement, this was adopted as standard for all aircraft carriers at the time. In 1948 the Society of British Aircraft Constructors moved their annual display to Farnborough. This would continue to be held annually on the site until 1962, when it changed to a biannual display in partnership with the Paris Air Show. Although initially this was only open to British designs from 1974 it became the Farnborough International Airshow. In 1952 the air show was the site of an major accident when a de Havilland DH110 broke up during a display and crashed into the crowd, killing 31. During the 1950s a substantial amount of testing was undertaken on many new civilian designs if aircraft and, even though some of these did not enter service, a great deal of technical information was gained from the experiments. Helicopters also began to undergo testing at the RAE with numerous aspects of their design being tested. 1952 also saw the arrival of an Avro 707 which was used to examine the aerodynamic properties of delta wings, data that would be later used in the design of Concorde and the Avro Vulcan. Following the loss of two Comet aircraft in 1954 the RAE was the site of a major investigation into the causes of their loss. Parts were salved from both of the crashes and brought back to Farnborough where they were pieced back together. Further to this a large water tank was built where a complete Comet body was repeatedly pressurised to investigate the effect of repeated pressurisation and depressurisation. Other Comets were also sent to the RAE to conduct flight trails and other investigations. All of these tests found that the aircraft had been lost due to the failure of the structure and led to a redesign of the type, as well as a greater understanding of the science of metal fatigue. By 1958 the structure of the RAE had developed to have the following departments: Aerodynamics, Armament, Armament and Instrument Experimentation, Carrier Equipment, Chemistry, Electrical Engineering, Experimental Flying, Guided Weapons, Instruments, Instrument and Photographic, Mathematical Services, Mechanical Engineering, Metallurgy, Naval Aircraft, Radio, Rocket Propulsion and Structures. 1958 also saw the beginning of calculations on the TRIDAC analogue computer as well as the launch of many of the rocketry projects that the RAE was involved in. These were the Skylark and Black Knight rockets that were both tested at the Woomera facility in Australia. During the 1960 the RAE was involved in a number of projects ranging from the development of the UK3 satellite, the first UK satellite, and the TSR2 aircraft to the invention of high strength carbon fibre. RAE scientists would also be present at the first launch of the Blue Streak rocket in 1964. This period also saw work undertaken as part of the development of Concorde, including testing the airframe for the effects of heat and stress. In 1970 the Royal Aircraft Establishment was involved in the launch of the R1 satellite by the Black Arrow rocket from the Woomera test site. This was the responsibility of the space department and built on the work they had undertaken on the previous Black Knight system. They would also have design authority for the Prospero satellite that was launched in 1971 and the Ariel IV, launched in 1973.`` 1970 also saw the opening of the RAE Museum on the site. For the rest of the 1970s the RAE was involved in the development of satellite and senor systems, for both military and civilian uses. The increase in importance of the satellite research was demonstrated in 1988 when the RAE changed its name to the Royal Aerospace Establishment. On 1st April 1991 the Royal Aerospace Establishment merged with the Admiralty Research Establishment, the Aeroplane and Armament Experimental Establishment, the Royal Armament Research and Development Establishment and the Royal Signals and Radar Establishment to form the Defence Research Agency. This brought together all of the previously independent Defence Research Establishments before it was itself merged with other departments to form the Defence Evaluation and Research Agency in 1995. Research flying would continue at Farnborough under these new institutions until 1994 when this end and in 2003 all Ministry of Defence operations on the airfield ceased.
- Normalair Ltd.BiographyBiographyIn 1946 Normalair Ltd. was formed as a subsidiary company of Westland Aircraft Ltd. to meet the growing demands for this specialist equipment, and today employs 1,100 people and has its own extensive production facilities. Normalair operate the most extensive respiratory laboratory, and are the largest producers of aircraft pressurisation, air conditioning and oxygen breathing equipment, in Europe. All British military aircraft that are pressurised are fitted with Normalair equipment, and such famous airliners as the Viscount, Britannia and Comet are equipped by Normalair. With subsidiary companies in Canada and Australia, and with representatives and agencies all over the world, Normalair provides a very wide market with cabin pressure controllers, discharge valves, safety valves, humidifiers, water extractors, flow control valves, cooling turbines, oxygen regulators, liquid oxygen converters, and many items of equipment vital to the needs of the aircraft of today. For several years the company has had license agreements with the two American companies foremost in these fields, namely the Garratt Corporation of Los Angeles and Bendix Aviation of New York. These agreements have been the source of substantial dollar export business by Normalair. In 1953, Normalair provided the oxygen equipment that enabled Sir Edmund Hillary and Sherpa Tensing to be the first to conquer Everest and, in 1955, provided the oxygen sets that were used in the first successful assault on Mount Kanchenjunga. The company also produces lightweight portable oxygen equipment for medical, industrial and emergency use, and are the sales agents in the UK for the respirators and breathing equipment made by Mrs Dräger of Lubeck. This business is handled by Normalair's branch office in Manchester. The Garrett Corporation took a 48% share in the company in 1966, and was subsequently renamed Normalair-Garrett Limited (NGL). The company is now Honeywell Normalair Garrett Ltd.
- RAF Institute of Aviation MedicineBiographyBiographyThe Royal Air Force Institute of Aviation Medicine was a Royal Air Force aviation medicine research unit active between 1945 and 1994. It was first located at Farnborough Airfield in Hampshire, and was successor to the wartime RAF Physiological Laboratory. The Institute conducted theoretical and applied reseach in support of flying personnel with divisions for acceleration, altitude, biochemistry, biophysics, personal equipment and teaching. The IAM obtained a decompression chamber (moved from the Physiological Laboratory) in 1945, supplemented by a climatic chamber in 1952, and a human centrifuge in 1955 (the latter facility is still in operation and was designated a Grade 2 Listed Building in August 2007). Additionally, the Institute was responsible for a number of mobile decompression chambers and the training of operators for chambers deployed at certain RAF operational stations with the object of familiarising flying personnel with the effects of annoxia at operational altitudes. The IAM became a world leading centre for aviation medicine research in the 1960s and 1970s, gaining additional facilities, and continuing an active flight research programme that commenced in World War II. Research into protection against the effects of high altitude, high G force, heat and cold stress, noise and vibration, sleep and wakefulness, spatial disorientation, vision, aviation psychology and human error, and aircraft accident investigation dominated activities at the IAM. Much work was done to develop and improve aircrew life support equipment. The IAM ceased to exist in 1994, when many research staff and facilities were transferred to the DERA Centre for Human Sciences.
- Robertson, D.G.BiographyBiographyWorked for the RAF Institute of Aviation Medicine, Farnborough.
- Billingham, JohnBiographyBiographyJohn Billingham was born on 18 March 1930 in Worcester, and after earning a degree in physiology at Oxford University, he started clinical studies at Guy’s Hospital in London, qualifying in 1954. He also attended meetings of the British Interplanetary Society. In 1956 Billingham joined the Royal Air Force as a medical officer, training as a surgeon and rising to the rank of squadron leader. His research at the Royal Air Force Institute of Aviation Medicine in Farnborough was particularly focused on climatic physiology, and included the impact of heat stress on pilots. In 1963 Billingham joined NASA after being headhunted from the Institute becoming the head of environment physiology at NASA's Johnson Space Center in Houston. He was hired to improve space suit design, with an early project being to develop water cooled underwear which the RAF Insitute had already been long working on. In 1965 Billingham moved to Ames Research Center, where he led the first comprehensive study on a permanent lunar laboratory. He was eventually named chief of the Life Sciences division. He supported the search for intelligent and microbial extraterrestrial life with a major programme including workshops, research, papers, and a major conference in 1979 later published as a book, Life in the Universe.
- Beardshall, GeorgeBiographyBiographyGeorge Beardshall was an engineer who is known to have worked for AVRO during the Second World War. Bearshall later worked as a Chief Engineer in the Oxygen Division of Normalair Ltd., which manufactured life support equipment for the aerospace industry.
- Simpson, R.E.BiographyBiographyWorked at the Royal Aircraft Establishment, Farnborough.
- Bolton, C.B.BiographyBiographyWorked at the Royal Aircraft Establishment, Farnborough.
- Federal Aviation AdministrationBiographyBiographyThe Federal Aviation Administration (FAA) of the United States is a national authority with powers to regulate all aspects of civil aviation. These include the construction and operation of airports, air traffic management, the certification of personnel and aircraft, and the protection of U.S. assets during the launch or re-entry of commercial space vehicles. Its function was formely held by the Civil Aeronautics Administration and is now a part of the US Department of Transportation.
- Royal Air ForceBiographyBiographyThe Royal Air Force was created by the amalgamation of the Royal Flying Corp and the Royal Naval Air Service as an independent air service during the First World War.
- Bendix Aviation CorporationBiographyBiographyThe Bendix Aviation Corporation was a manufacturer of aircraft parts based from 1929 to 1960 in Los Angeles, California. It was started by inventor Vincent Bendix in 1929 as a continuation of his auto parts company. It was renamed to Bendix Corporation in 1960, and in 1983 was acquired by the Allied Corporation (later Allied Signal) and combined with King Radio Company to form Bendix/King. Now owned by Honeywell, Bendix/King remains a brand of avionics. Bendix Aviation developed and manufactured advanced carburetion for aircraft engines; landing gear oleo struts; jet engine fuel controls for early J79 engines; and designed guidance systems and assembled the Talos missile for the US Navy. Bendix aviation masks and gauges were also modified and tested for use in diving and hyperbaric applications.
- Ministry of SupplyBiographyBiographyThe Ministry of Supply was established in 1939 with responsibility for the Royal Ordnance Factories and for the supply of munitions, clothing etc to the War Office and Air Ministry. In 1946 it took over the responsibilities of the Ministry of Aircraft Production after it was abolished. In October 1959 the civil aviation functions of the Ministry of Transport and Civil Aviation were transferred to the Ministry of Supply, which was simultaneously disbanded and reconstituted as the Ministry of Aviation; at the same time supply functions, with the exception of those relating to aircraft, guided missiles, radar and electronic equipment, were returned to the Air Ministry and War Office.
- Subject
- Conditions governing accessOpen access.
- Conditions governing ReproductionCopies may be supplied in accordance with current copyright legislation and Science Museum Group terms and conditions.
Creator
Associated people and organisations
Hierarchy browser
- contains 5 partsTOPYA2007.25 Papers relating to the Development of a Full Pressure Suit by P Frankenstein & Sons
- contains 3 partsSERIESYA2007.25/4 Materials on Oxygen Systems and Equipment